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ON 4-CONNECTED, 
PLANAR 4-ALMOST PANCYCLIC GRAPHS 

MARIAN TRENKLER 

A graph G with v vertices is pancyclic if G has cycles of all lengths m, where 
3 < m ^ v. If G contains cycles of all lengths except for k, then G is called a 
k-almost pancyclic graph. 

Conjecture (Bondy [2]). A planar hamiltonian graph in which every vertex 
has the valency at least 4 is pancyclic. 

C h o u d u m [3] and Ma lkev i t ch [4] gave several counter-examples to 
this conjecture, which are not 4-connected. Since Tu t t e [6] proved that ev
ery 4-connected planar graph is hamiltonian, there arose the problem whether 
the Conjecture is true if the conditions concerning the valency of the vertices are 
replaced by a stronger condition so that G be 4-connected. 

Ma lkev i t ch constructed a 4-connected planar 4-almost pancyclic graph 
with 30 vertices. This introduces the problem for which number of vertices there 
exists a 4-connected 4-almost pancyclic graph. At the Czechos lovak 
Confe rence on G r a p h Theo ry held in May 1985 Jacos and Nincak 
described the construction of such graphs for all 30 ^ v = 0 (mod 3) except for 
v = 33 and all v ^ 50. 

We shall prove the following. 
Theorem. A 4-connected planar 4-almost pancyclic graph with v vertices exists 

if and only if 
a) 30 ^ v = 0 (mod 3), v + 33 or 
b) 46 ^ v = 1 (mod 3) or 
c) 44 ^ v = 2 (mod 3), v *- 47. 
In the first part we describe the construction of 4-connected planar 4-almost 

pancyclic graphs for every required number of vertices. In the second part we 
prove the non-existence of such graphs for other values of v. 

Let G be a planar graph imbedded in a plane with v vertices and h edges 
and p faces. Denote by vt the number of its vertices of degree / (/-valent vertices) 
and by /?, the number of /-gonal faces (/-gons). 

Lemma 1. Every ^-connected planar graph G satisfies the conditions 

a) £ (6 - k)pk + 2 X (3 - k)vk: = 12, and 
k^i k>l 
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b) X (4-k){pk + vk) = 8. 
k > 3 

These conditions follow immediately from Euler's theorem for planar graphs. 
Lemma 2. A planar 4-edge-connected graph and ^-connectedgraph H contain

ing exactly pk k-gons and k-valent vertices for all k exists iff there exists a 
4-connected 4-valent planar graph Ji(H) containing exactly pk k-gons for all k. 

P r o o f A medial graph J/(H) of a planar graph H is formed in the foll
owing way (see [5, p. 47]): To each edge of//there corresponds a vertex of J/(H) 
and two vertices of M(H) are joined by an edge if they correspond to two edges 
incident with the same face of H and have a common vertex. (In Fig. 1 H is 
depicted by full lines and Ji(H) by dashed lines.) A medial graph of any planar 
graph is 4-valent. 

Fig. 1 

It is easy to show that every 4-valent planar graph is a medial graph of a 
planar graph because all faces of the 4-valent planar graph are regularly colour
able by two colours. The faces of one colour correspond to the vertices of H and 
the others to the faces of //. 

Note that there exist two mutually dual graphs with the same medial graph 
Ji(H). From Lemma 1 it follows that at least one of them has at least four 
3-valent vertices. This graph H will be called the antemedial graph to Ji(H). 

The construction of a 4-connected, planar 4-almost pancyclic graph G 
with v vertices. 

a) v = 30, 36, 39, 42, 45 
The graph G is a medial graph of the dodecahedron for v = 30, or a medial 

graph of the starting graphs in Figure 2. For v = 36 it is depicted by full lines 
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and for v = 39 by full and dot-and-dashed lines and for v = 42 or 45 by full and 
dot-and-dashed and one or two dashed lines, respectively. The corresponding 
medial graph contains cycles of all lengths, except for cycles of length four. If 
the depicted graph has the cycle C of length k, then its medial graph has cycles 
of all lengths mfork^m^ min {2k, v} passing through vertices added to edges 
of cycle C and to edges having one common vertex with C 

b) 48 < 0 = 0 (mod 3) 

Fig. 2 

Fig. Зa 
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For v = 48 the graph G is a medial graph of the starting graph in Figure 3a. 
If v = 48 + 3s, for 1 ^ s = 0 (mod 2), then to the faces indicated by a, b we add 
alternately s edges. In the case 8 = 4, the order (indicated by numbers) of adding 
edges is showed by dashed lines in Figure 3b. If s = 1 (mod 2), we add analo
gously (s — 1) edges to the faces a, b and the last one is added to the face c such 
that the faces incident with the vertex u (indicated in Fig. 3a) will be 6-gonal. 

Fig. Зb 

c) 46 ^ v = 1 (mod 3) 
Using the construction described in b) we construct a 4-almost pancyclic 

graph (/*, with v + 2 vertices. In G* there exist two triangles having common 
edges only with k-gons, k ^ 6. By identification the vertices of one of these 
triangles (see Fig. 6, where the inverse transformation is depicted) we obtain the 
graph G with exactly one 6-valent vertex and (i; — 1) 4-valent vertices without 
cycles of length four. 

d) 44 ^ v = 2 (mod 3), v # 47 
Using the construction described in b) we construct a 4-almost pancyclic 

graph with v + 4 vertices. As in c) we use two triangles non-incident with 5-gons 
to form two 6-valent vertices. 

In the next part we prove the non-existence of a 4-almost pancyclic graph G 
with exactly p, /-gons and vt /-valent vertices, whose every vertex is of degree ^ 4 
(not necessarily 4-connected) with v vertices for 

1 ^ v ^ 29, 31 ^ v ^ 35, v = 37, 38, 40, 41, 43, 47. 

The necessary condition for G to be a planar 4-almost pancyclic graph is that 
G must contain neither two triangles with a common edge nor a quadrangle, i.e. 

3P3 ^ X kPk-
S^k 

We designate the edges of the triangles of G as t-edges and the edges 
non-incident with triangles d-edges. By d we denote the number of d-edges. 
Evidently every vertex of odd degree is incident with at least one d-edge. From 
this follows. 
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Lemma 3. The subgraph of a planar 4-almost pancyclic graph with v3 = 0 
formed from d-edges consists of paths joining couples of vertices of odd degree and 
possibly edge-disjoint cycles. 

A consequence of Lemma 3 is that in a planar 4-almost pancyclic graph G 
with all vertices of even degree the d-edges must from cycles of length at least 
five. 

Lemma 4. The necessary condition for G with v3 = 0 to be a planar 4-almost 
pancyclic is 

X (k-3)pk = v-6 + ± £ ( 4 - ^ . 
5^k 5 0 

P r o o f In the identity 

X kPk = L kvk 
Idk 4 < k 

we substitute from relation b) of Lemma 1, obtaining 

3[8+ L ( * - 4 ) fo+ »,)]+ YJkpk= £ H 
L 4 * : * J 5 s: A; 4<* 

24 4- 4 £ (k - 3)pk -= - 2 £ kvk + 12 £ Vk 
5^k 4^k 4^k 

Yt(k-3)pk = v-6 + ±Z(4-k)vk. 
5^k 4^k 

The necessary conditions from Lemmas 3 and 4 are satisfied by the following 
16 cases in Table 1. 

Table 1 

Case V "5 »6 Pъ Ps Pь Pl d Remark 

1 33 0 0 22 12 1 0 0 

2 40 0 0 25 17 0 0 5 м, 
3 43 0 0 27 17 1 0 5 м, 
4 47 0 0 29 19 1 0 7 

5 39 2 0 26 16 0 0 1 м
2 

6 41 2 0 27 17 0 0 2 м
2 

7 43 2 0 28 18 0 0 3 м
2 

8 47 2 0 30 20 0 0 5 м
2 

9 47 2 0 31 17 2 0 2 м
2 

10 47 2 0 31 18 0 1 2 м
2 

11 37 0 25 15 0 0 0 м, 
12 40 0 27 15 1 0 0 м, 
13 43 0 29 15 2 0 0 м, 
14 43 0 29 16 0 1 0 м, 
15 47 0 30 20 0 0 5 м,. м, 
16 47 0 2 32 18 1 0 0 м,. м, 
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In case 4 the corresponding graph G does not exist because otherwise it would 
have at least one 7-gon. 

We suppose that in all the other cases the corresponding graph G exists. 
Using three modifications M h i = 1, 2, 3, in the order described in the remark 
in Table 1 we transform these graphs into 4-valent planar 4-almost pancyclic 
graphs having no d-edges. The antemedial graph of such a graph is 3-valent. In 
[1] there are described all 3-valent planar graphs having no triangles and 
quadrangles with less than 20 faces and none of them has the configurations of 
faces arising by such modifications. For example, in case 2 the antemedial graph 
to the modified graph after M, must contain one 5-gon having the common 
edges only with five 6-gons and all the other faces must be 5-gons. From this 
there follows the non-existence of planar 4-almost pancyclic graphs which are 
formed by these modifications and have less than 20 faces of degree ^ 5, except 
for the cases 4, 8, 15, 16. 

Modification M,: In every edge of a cycle C of length s formed only from 
d-edges we choose one new vertex. Adding s new edges (dashed lines in Fig. 4) 

Fig. 4 

ч 
i\ 
i \ 

Fig. 5 

joining the chosen vertices to the incident d-edges we obtain a graph with at least 
v faces of degree ^ 6. The corresponding medial graph has at least one k-gon, 
k ^ 5, incident only with //-gons, h ^ 6. 
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Modification M 2 : We divide every 5-valent vertex into two vertices joined by 
a new edge. We add to every d-edge one new vertex and connect these vertices 
by new edges as shown for the case 8 in Figure 5 (all new edges are indicated 
by dashed lines). 

Modification M 3 : The 6-valent vertex (Fig. 6) is replaced by a triangle. (This 
is an opposite operation to the construction step used in c).) 

Л..Í...Z.' 

Л 
\ / \/ 

Fig. 6 

R e m a r k . Modification M 3 may be used because no edge incident with 
6-valent vertices is a d-edge. 

The non-existence of the corresponding graph in case 8 follows from the fact 
that the antemedial graph to the modified graph after M2 must contain seven 
6-gons in configuration showed in Figure 7 and all the other faces are 5-gons. 
This is impossible from the unambiguity of the construction. 

Fig. 7 

Analogously we can show the non-existence of the corresponding graph in 
cases 15 and 16. 
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OБ 4-CBЯЗHЫX ПЛAHAPHЫX 4-ПOЯTИ ПAHЦИKЛИЧECKИX ГPAФAX 

Marián Trenkler 

Peзюмe 

Плaнapный 4-cвязный 4-пoчти пaнцикличecкий rpaф G (гpaф G, coдepжaющий циклы вcex 
длин кpoмe 4) c v вepшинaми cyщecтвyeт тoгдa и тoлькo тoгдa, кoгдa 

30 ^ v = 0 (mod 3), v ф 33 или 
46 ^ v = 1 (mod 3), или 
44 ^ v = 2 (mod 3), v ф 47. 
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